Evaluation of Early Access NextSeq 2000 2x300 Cycle Sequencing Poster CPHM-289 **Chemistry Utilizing Datasets of Importance to Food Safety** 6/18/2023

Christopher Grim¹, Phillip Curry¹, Ai Kataoka¹, Jose Roberto Guzman², Padmini Ramachandran¹, Tina Y. Huang³, Samuel S. Hunter³, Adrienne Hall³, Kelly Hoon³, Sandra M. Tallent¹

¹Center for Food Safety and Applied Nutrition, Food and Drug Administration, USA; ²Goldbelt C6, LLC., Chesapeake, VA, USA, ³Illumina, Inc., San Diego, CA

Abstract

Background: Illumina-based short-read chemistry has become the com standard for whole genome sequencing (WGS) and the MiSeq[™] (MS) benchtop sequencer has become a "workhorse" in this sector. The Illumina NextSeg[™] (NS) 1000/2000 suits a number of mid-throughput applications; however, until recently only up to 2x150 bp paired-end read sequencing was available

Methods: To assess the application of 600 cycle sequencing on the NextSeq 2000 platform, both bacterial isolate WGS and shotgun metagenomics libraries were used.

The WGS sample set (strains of Shiga toxin-producing E. coli, Salmonella, Vibrio urahaemolyticus and a diverse validation foodborne strain set) were run on NS 2000 P1 & P2 flow cells (FCs) with 600 cycles (NS600), compared to NS 2000 P1 300 cycles (NS300) and MiSeq 600 cycles (MiSeq) and analyzed for read1 and read2 quality scores, assembly number of contigs and N50.

The metagenomics samples (scat and wastewater samples) were run on NS 2000 P2 with 600 cycles and compared with 300 Cycles (NS300). Metagenomic datasets were compared according to % classified reads and % reads identified as a target foodborne pathogen serovar.

Results: The mode of the average read quality scores for read 1 and read 2 were Q32 and Q31 for NS600 cycle, Q35 and Q31 for MiSeq, and Q33 and Q32 for NS300 cycle, respectively; however, MiSeq runs were restricted to 2 x 250 cycles to achieve this read quality. Regardless of the organism, the N50 value was higher and the contig numbers were lower for the draft assemblies from the NS600 flow cell runs, compared to NS300 and MiSeq, irrespective to coverage. For the metagenom sequencing trials, we observed improved resolution at the read level for the NS600 flow cells. For a scat metagenome dataset (n=72), we were able to determine the same Salmonella serovar for all 26 samples identified with NS300 cycle flow cell, with only 25% of read sequencing depth. Further, an additional 5 samples were correctly identified, as determined by culture results, that were not with NS300 cycle equencing. As expected, the longer sequencing cycling condition also resulted in a higher percentage of sequencing reads being identified using Kraken2 and an in-house kmer taxonomic classification tool, Bactikme

Conclusions: The NextSeq 2000 P1 and P2 600 cycle flow cells produced 2x longer reads with no reduction is sequencing quality, which allowed better isolate WGS assemblies and better discrimination with lower read depth for metagenomic datasets The improved resolution enables higher throughput sequencing applications for food safety

Sequencing Read Quality

Representative distribution plots of %Q30 base-call quality score by cycle number for NextSeq and MiSeq platforms. Plots enclosed in boxes represent runs in which the same DNA Prep libraries were run on each instrument and flow cell.

Base-call quality score, %Q30, plotted versus sequencing yield for all trials. For the same libraries sequenced on P1 and P2 600c kits, total %Q30 has a much tighter distribution compared to MiSea runs.

Last 10 cycles %Q30 on P1 and P2 600c kits are consistently higher with less spread vs. previous MiSeq runs

Isolate whole genome sequencing de novo assembly metrics by organism for each platform and cycle combination

Percent of sequencing reads classified by Kraken2 from metagenomic trials by NextSeq flow cell kit. Analysis was performed on concatenated and merged read datasets, and then further divided by taxonomic level

was performed on the merged read datasets.

Salmonella Newport					
Flowcell	Sample	1º enrich	RV	Π	
	F762			23582	
P2-600		ND	ND	(0.63%)	
				110620	
P3-300		ND	ND	(0.8%)	
	F798	49444	1686617	167536	
P2-600		(1.34%)	(30.39%)	(1.96%)	
		249754	7240153	629114	
P3-300		(1.77%)	(33.32%)	(2.0%)	

Experimental Design

- Illumina provided 3 P1 600 cycle kits and 3 P2 600 cycle kits for Early Access testing on NextSeq 2000 (NS2K)
- Objective(s) To evaluate NS2K 600 cycle kit performance compared to NS2K 300 cycle kit and MiSeq (2x250 or 2x 300) performance
- 6 trials (and evaluation parameters):

▶ Isolate WGS - assembly N50 and # contigs

- 1. P1 run1 81 STEC, 15 Salmonella; NS600 and MS500
- 2. P1 run2 114 Salmonella, 75 V. para; NS600, NS300, MS500
- 3. P1 run3 192 STEC; NS600, NS300, MS500
- 4. P2 run1 196 Salmonella, CVSS; NS600, NS300, MS600
- Shotgun Metagenomics taxonomic classification, select target resolution
 - 5. P2 run2 72 scat and soil samples; unenriched, and primary and selective (RV or TT) enrichments for Salmonella
 - 6. P2 run3 92 wastewater samples

CFSAN Verification Strain Set (CVSS)

CFSAN #	Organism	Purpose	
CFSAN000189	Salmonella enterica Bareilly	SNP recovery	
CFSAN000318	Salmonella enterica Heidelberg	plasmid detection	
CFSAN000661	Salmonella enterica Bareilly	SNP recovery	
CFSAN000669	Salmonella enterica Bareilly	SNP recovery	
CFSAN000752	Salmonella enterica Bareilly	SNP recovery	
CFSAN002349	Listeria monocytogenes	SNP recovery	
CFSAN007850	Staphylococcus aureus	AMR, toxin detection, low G+C%	
CFSAN007894	Staphylococcus aureus	toxin detection, low G+C%	
CFSAN008100	Listeria monocytogenes	well-characterized strain	
CFSAN008585	Salmonella enterica Derby	organism diversity	
CFSAN023464	Listeria monocytogenes	SNP recovery	
CFSAN023465	Listeria monocytogenes	SNP recovery	
CFSAN023468	Listeria monocytogenes	SNP recovery	
CFSAN023469	Listeria monocytogenes	SNP recovery	
CFSAN029786	Shigella dysenteriae serotype 3	AMR	
CFSAN030807	Shigella sonnei	plasmid detection	
CFSAN032805	Campylobacter coli	organism diversity, low G+C%	
CFSAN032806	Campylobacter jejuni	organism diversity, low G+C%	
CFSAN044836	Listeria innocua	organism diversity	
CFSAN051458	Escherichia coli O121	toxin detection	
CFSAN068773	Cronobacter sakazakii	organism diversity	
CFSAN068816	Bacillus cereus	organism diversity	
CFSAN076620	Escherichia coli O157:H7	toxin detection	
CFSAN084950	Pseudomonas aeruginosa	common background, High G+C	
CFSAN084952	Pseudomonas fluorescens	common background, High G+C	
CFSAN086180	Klebsiella variicola	common background	
CFSAN086181	Klebsiella pneumoniae	common background	
CFSAN086182	Citrobacter braakii	common background	
CFSAN086183	Enterobacter cancerogenus	common background	
CFSAN122995	Salmonella enterica diarizonae	organism diversity	
CFSAN123154	Vibrio parahaemolyticus	organism diversity	
CFSAN123155	Vibrio parahaemolyticus	organism diversity	

, Tel +240-402-3582

WGS Assembly Data Quality

Shannon diversity box plots for metagenomic trials (5 and 6) by NextSeq flow cell kit. Analysis

Salmonella target (serotype(s)) resolution – NS 600c achieve equivalent or better resolution compared to NS 300c with, on average, 28% sequencing read depth. NS600c also detected 5 additional serovar strains: Dublin (x2), Infantis, Newport, and Poona (second serovar present in sample). Four samples, with multiple enrichment timepoints, shown.

Coming Soon - ICLR

FastQC plots of base-call quality scores by cycle number for MiSeg[™], NextSeg[™], and Illumina Complete Long Read (ICLR) for the CVSS (CFSAN Verification Strain Set). For NextSeg[™] and MiSeg[™], the same DNA prep libraries were run on each instrument and flow cell. For ICLR, initial libraries were run on NovaSeg ™ 6000.

MiSeg FastOC: Mean Quality Scores

NextSeg 600 cycle (PE300) FastQC: Mean Quality Scores

NextSeg 300 cycle (PE150) FastQC: Mean Quality Score

ICLR FastQC: Mean Quality Scores

Bandage visualizations of ICLR and short-read primary sequencing de novo assemblies of CVSS examples.

Salmonella enterica Bareilly CESAN000669

Vibrio parahaemolyticus CFSAN123154

Staphylococcus aureus CFSAN007850

Escherichia coli O157:H7 CESAN076620

Conclusions

45.42 G+C %

- NextSeq 600 cycle kits yielded sequencing accuracy quality scores equivalent or better than MiSeq 600 cycle V3 chemistry, especially in late R1 and R2 cycles, with less variability.
- NextSeq 600 cycle kits yielded genome assemblies that were equivalent or better than MiSeq 600 cycle V3 chemistry and were a considerable improvement over NS 300 cycle kits.
- · For metagenomic samples, longer reads improve taxonomic classification fewer unclassified reads, and improve diagnostic power - more specific with lower read depth
- ICLR generates long reads for complete or near-complete de novo genome assembly.