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Single-Cell Sequencing Workflow: Critical
Steps and Considerations

Explore every step of the single-cell sequencing workflow and learn valuable
insights to ensure experimental success.

Learn more about single-cell sequencing
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Extensive microscopic study by Anton van Leeuwenhoek and Robert Hooke in the mid seventeenth century
resulted in discovery of cellsin 1665. This pioneering work eventually led to establishment of the scientific
discipline of cellular biology and development of the celltheory in 1839. This historic scientific theory states
that living organisms are composed of one or more cells, the cellis the basic unit of structure and organization
ofliving organisms, and all cells arise from preexisting cells. Major advances in cellular and molecular biology,
genetics, and other fields have revealed the highly complex composition of multicellular organisms and have
enabled the study of biology at the resolution of its fundamental unit.

Living tissues are made up of an extensive variety of celltypes, each with a distinct lineage and unique function
that contribute to tissue and organ biology, and ultimately, define the biology of the organism asa whole. The
lineage and developmental stage of each cell determine how they respond to other cellsand to their
microenvironment. In addition, subpopulations of cells of the same type are often genetically heterogeneous
from each other as wellas from other cell types due to stochastic changes over time. Due to this complexity,
gaininginsights into cellular function through bulk analyses of tissues or cells presents significant challenges,
highlighting the need toisolate individual cells for characterization.’

Various methods have been developed for isolation and analysis of single cells, but the invention of
fluorescence activated cellsorting (FACS) in the late 1960s was a significant breakthrough that hasimpacted
hematology, immunology, cancer research, and more.? Thistechnology provides qualitative and quantitative
measurement of cellular characteristics such as size, internal complexity, DNA/RNA content, and a wide
range of membrane-bound and intracellular proteins (via detection of autofluorescence or fluorochrome-
conjugated antibodies) and enables isolation of cells based on differential expression patterns. Isolated cells
can be inputinto downstream analyses, in vitroculture experiments, or in vivotransplantation studies.

Inaddition toits widespread adoption in bulk analysis, quantitative PCR (qPCR) has been a preferred
method for downstream analyses of single cells, given its wide dynamic range, familiar workflow, and lack of
need for specialized instrumentation.® However, gPCR can only interrogate a smallnumber of targets with
known seguences, and the workflow can be cumbersome for large numbers of samples. The high accuracy
and specificity of next-generation sequencing (NGS) technology makes it ideal for single-cell sequencing.
NGS provides higher discovery power to detect novel genes, without prior knowledge of sequence
information, and higher sensitivity to quantify rare variants and transcripts, making it the preferred method of
single-cellanalysis over gPCR, especially for higher throughput studies.
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Enrichment Sequencing

The Single-Cell Sequencing Workflow

The single-cell sequencing workflow includes four crucial steps: 1) initial tissue preparation, 2) single-cell
isolation and library preparation, 3) sequencing and primary analysis, and 4) data visualization and
interpretation (Figure 1). There are experimental considerations and critical steps throughout the workflow
that canimpact results and determine the success of a study. Awell-planned and executed experiment is
important to ensure accurate data and draw insightful conclusions.*

Single cell isolation Sequencing and Data visualization
and library prep primary analysis and interpretation

Tissue preparation

Mechanical, enzymatic, Low-throughput: microdissection, FACS llumina Sequencing System Multiple commercial and freeware
or combinatorial methods with High-throughput: microfluidics, secondary and tertiary analysis
enrichment (optional) and QC droplet-based, microwell approaches packages available

Figure 1: The single-cell sequencing workflow— A single-cell sequencing workflow proceeds from initial tissue
preparation through single cellisolation and library prep, sequencing and primary analysis, and data visualization and
interpretation.
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Step 1: Tissue Preparation

Introduction

Most single-cellisolation platforms require a viable, monodispersed sample prior to compartmentalization or
fixation. Type oftissue, species, and age of animal can allinfluence isolating live single-cells from tissues. This
chapter presents some of the key considerations in the preparation of viable single-cell suspensions.

Dissociation

The process of single-cell preparation is a significant source of variability in any single-cell study. T Samples
where cells are adheringin clumps or have high rates of celldeath can confound data and lead to
misinterpretation. Nonadherent cells such as peripheral blood mononuclear cells are often more amenable to
single-cell processing than adherent cells or cells isolated from tissue. Tissues can vary significantly in
extracellular matrix (ECM) composition and cellularity, and protocols should be optimized for a specific tissue
ofinterest.? Conventional protocols for tissue dissociation include mechanical dissection, enzymatic ECM
breakdown, and combinatorial protocols (Table 1).

Table 1: Tissue dissociation protocols
Method/protocol Description Example protocol/provider

Tissue is mechanically sheared and disrupted through cutting, Isolation of various hematopoietio

Mechanical dicing. ioetting. etc lineages from bone marrow, spleen,
9. pip 9 orlymph nodes
Enzymatic Tissues are incubated with various enzymes such as collagenase, Worthington Biochemical Corporation

trypsin, dispase, elastase, etc to cleave protein bonds

Mechanical and enzymatic methods can be performed sequentially
Combinatorial or simultaneously, with the aid of automated systems, for more Miltenyi gentleMACS
extensive dissociation

Enrichment

Enrichment of specific cell populations, or removal of unwanted cell populations, including dead cells, isan
optional, but often critical step in single-cell preparation, especially with rare cells or precious samples.
Various methods are available that should be optimized for each specific tissue type (Table 2). Manual
isolation of cells based on size, shape, and density can be achieved through differential/density gradient
centrifugation and filtration. For example, mononuclear cells can be isolated from peripheral blood or bone
marrow by centrifugation through various density gradient media.® Various fluorescent dyes are available to
labeland separate live cells from dead orapoptotic cells using FACS (Table 3). For enrichment of cell
subpopulations/rare celltypes, antibody labeling for positive/negative selection can be combined with FACS

For Research Use Only. Not for use in diagnostic procedures.
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Enrichment Sequencing

ormagnetic bead-based isolation. Ultimately, the method chosen will be driven by a combination of factors,
including sample type, antibody availability, and experimental design.

Table 2: Enrichment methods

Method Description AYEIERE .
protocol/provider
Centrifugation Cells are enriched based on size, shape, or density by centrifugation through a density Sigma-Aldrich

gradient medium
Bead-based Cell populations of interest (including live cells) are enriched by positive/negative selection
enrichment  with magnetic bead-conjugated antibodies

Miltenyi Biotec

Beckman Coulter

Cell populations of interest (including live cells) are enriched by positive/negative selection  Becton Dickinson
with fluorophores/fluorochrome-conjugated antibodies BioLegend
Bio-Rad

FACS

Microfluidic Cell populations of interest are enriched using low-pressure microfluidics based on positive

cell sorting and negative selection with fluorophores/fluorochrome-conjucated antibodies NanoGellect

Table 3: Live/dead reagents

Reagent Mechanism Pros Cons
gﬁislc Membrane impermeant dyes (eg, PI, 7-AAD) Inexpensive. easy 1o use Not compatible with intracellular
dyes that bind DNA will be excluded by live cells P ’ Y staining

Amine  Membrane impermeant dyes that bind amine Compatible with intracellular ~ More expensive than other dyes,

. : . staining, wide selection of labeling must be done in absence of
dyes groups of proteins will be excluded by live cells ) )
dyes available free protein
Vital Membrane permeable dye that becomes ) . Challenging to use with intracellular
dyes fluorescent only when cleaved by metabolically Inexpensive, easy to use staining

active (live) cells

Abbreviations: PI, propidium iodide; 7-AAD, 7-aminoactinomycin D

Link: expertcytometry.com/3-reagents-for-identifying-live-dead-and-apoptotic-cells-by-flow-cytometry/

Quality Control

Single-cell sequencing experiments represent a significant investment of time, money, sample material, and
resources. Several simple quality control (QC) measures throughout can ensure a high-quality experiment
before proceeding with cellisolation, library preparation, and sequencing.

Visual Inspection

Visualinspection of the cell suspension under a microscope is valuable as it enables quick identification of
debris, celldoublets, and cellaggregates that can complicate downstream steps (Figure 2). Importantly,
accurate cellcounts are critical to achieve target cell throughputs in subsequent single-cellisolation
procedures. Cell counts can be determined manually by combining microscopy with a hemocytometer.
Automated systems are also available that provide accurate cell counts, capture brightfield images of the cell
suspension, and generate histograms for more detailed inspection based on cell characteristics such as size,
brightness, and circularity. Examples of commercially available automated cell countersinclude the
Countess Il Automated Cell Counter (Thermo-Fisher), the TC20 Automated Cell Counter (Bio-Rad), and the
Auto 1000 Bright Field Cell Counter (Nexcelom Bioscience).

For Research Use Only. Not for use in diagnostic procedures.
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https://www.sigmaaldrich.com/technical-documents/articles/biofiles/centrifugation-separations.html
https://www.miltenyibiotec.com/
https://www.beckman.com/flow-cytometry/instruments?_ga=2.219157852.451475471.1554411516-1004518182.1554411516
https://www.bd.com/en-us/offerings/capabilities/single-cell-multiomics
https://www.biolegend.com/
http://www.bio-rad.com/en-us/category/flow-cytometry?ID=MC3PCU15
https://nanocellect.com/
https://expertcytometry.com/3-reagents-for-identifying-live-dead-and-apoptotic-cells-by-flow-cytometry/
https://www.thermofisher.com/order/catalog/product/AMQAX1000
http://www.bio-rad.com/en-us/product/tc20-automated-cell-counter?ID=M7FBG34VY
https://www.nexcelom.com/nexcelom-products/automated-cell-counters/cellometer-auto-1000-automated-cell-counter/

Enrichment Sequencing

Cell aggregates <10% dobet

Figure 2: Visual inspection of cell suspensions — Visual inspection of prepared cell suspensions after tissue dissociation
by brightfield microscopy reveals debris, cell doublets, and larger cellaggregates (yellow circles) present inthe
samples. A sample with < 10% doublets is shown (right).

Flow Cytometry

Flow cytometry is a valuable tool for quality control, as multiple metrics can be assessed simultaneously,
including cell size, viability, and presence of doublets or aggregates. Also, antibody labeling canbe included
aspart ofthe analysis to evaluate whether cell populations of interest are present and maintained at the
appropriate frequency.

Key Metrics

Severalkey QC metrics that can be measured to indicate successful preparation of a monodispersed cell

suspensioninclude:

« Cellviability: Dead or damaged cells can release nucleic acidsinto cell suspension that remain through sub-
sequent steps, possibly impacting results. Cell viability levels > 85% are recommended.

« CellSize Distribution: Histogram plots can be inspected for presence of multiple peaks indicating cellular
fragments (smaller peaks), doublets/aggregates (peak at twice nominal cell size), or large debris (larger
peaks).

« CellConcentration: The idealloading concentration for cells depends on the isolation method. Optimal con-
centration s critical as underloading or overloading can cause issues with single cellisolation or data quality.

Summary

Harnessing the potential of single-cell sequencing to investigate complex biological systems at the level of
individual cells requires that tissues are properly dissociated to monodispersed suspensions of viable cells. A
wide selection of methodsis available, and the specific protocol should be selected and optimized based on
the tissue of interest. Consideration should be given to the inclusion of an enrichment step and key QC metrics
toensure a highyield of single cells while maintaining viability. After a tissue preparation protocolhas been
optimized, researchers can proceed with confidence to single cellisolation and library preparation.

For Research Use Only. Not for use in diagnostic procedures.
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Step 2: Single Cell Isolation and Library

Preparation

Introduction

Various methods have been developed for the capture and isolation of single cells, and selection of an optimal
approach dependslargely on the research question and sample type. Similarly, various techniques are
available for profiling the genome, transcriptome, epigenome, and proteome ofisolated cells, and the
method chosen willdetermine library preparation, sequencing, and downstream analyses. This chapter
discusses options available for single cellisolation and highlights techniques used for global characterization of

isolated cells.

Cell Isolation Methods and Platforms

Cellisolation methods can be distinguished by throughput. Low-throughput methods include mechanical
manipulation or cell sorting/partitioning technologies (eg, FACS) and are able to process dozens to hundreds
toafew thousand cells per experiment (Table 4). Advances in microfluidic technologies have enabled high-
throughput single cell profiling where researchers can examine hundreds to tens of thousands of cells per
experiment in a cost-effective manner (Table 5).°

For Research Use Only. Not for use in diagnostic procedures.
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Table 4: Low-throughput single-cell isolation approaches

Method/Platform

Description

Advantages

Enrichment Sequencing

Disadvantages

Commercial
offering/
Example methods

Serial dilution

Serial dilution of cell
suspension down to
one cell perwell

Simple approach; does not require
specialized equipment

Time-consuming;
probability of isolating
multiple cells

Comning Serial
Dilution Protocol

Isolation of single

Technically difficult,

Mouth pipetting C.e||S with glass Simple approach random N/A
pipettes
An automated
system for high-
. Isolation of single ) o throughput single
Robotic Requires specialized

micromanipulation

cells with robotic
micropipettes

Positional placement of cells

equipment

cell-based breeding.
Single cell deposition
and patterning with a
robotic system.

Lasercapture
microdissection

Dissection of single
cells from tissue

sections using a laser

Spatial contextis preserved

Technically
challenging; Potential
UV damage to
DNA/RNA

Laser capture
microdissection of
single cells from
complex tissues.

FACS

Isolation of
microdroplets
containing single
cells using electric
charge

Accurate selection of cell types by
size, morphology, internal
complexity, and protein expression

by antibody labeling

Requires expensive,

specialized equipment;

cells exposed to high
pressure

Beckman Coulter
Becton Dickinson
Bio-Rad

Table 5: High-throughput single-cell isolation approaches

Commercial
Method/Platform Description Advantages Disadvantages offering/
Example methods
) ey . Requires .
Microfluidics Microfluidic chipsisolate cells Hignly sgnsﬂn(e chemistry, uniform cell Flu?dfgm c System
L . compatible with small volumes, . . Fluidigm Polaris
circuits in flow channels ) : size, expensive
flexible with custom reagents System
consumables
1CellBio inDrop
System
10X Genomics
Chromium
Compartmentalization of Unigue molecularidentifiers (UMIs) Requires Controller
. individual cells in droplets and cell barcodes enable celland specialized .
Droplet fluidics . : - : s - . Bio-Rad ddSEQ
710 using a microfluidics device  gene-specific identification, low cost equipment, can _.
platforms . . . Single-Cell Isolator
followed by lysis and capture  percell, extensive support from be technically
of target DNA/RNA commercial providers challengin nstrument
9 99 Dpolomite Bio Nadia
Instrument
Mission Bio Tapestri
Platform
BD Rhapsody
Single-Cell Analysis
Capture of individual cellsin ~ Supports imaging and short-term Limited System
Microwells'">  microwells of fabricated culture of cells, ideal foradherent commercial CellMicrosystems
arrays cells solutions CellRaft AIR System
Celsee Genesis
System
Intact nuclei are tagged with I\/IrLCJ)Ifti:ir;IeZ?mgle cell
) ) unique barcodes via two Low-cost approach to profile large Limited P 9 .
Combinatorial o . . . chromatin
. . rounds of random distribution number of cells and compatible with commercial -
indexing . . ) - ) accessibility by
into microwells andlabeling  multiomic methods solutions combinatorial

via transposases

cellularindexing.

For Research Use Only. Not for use in diagnostic procedures.
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https://www.corning.com/catalog/cls/documents/protocols/Single_cell_cloning_protocol.pdf
https://www.corning.com/catalog/cls/documents/protocols/Single_cell_cloning_protocol.pdf
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013542
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013542
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013542
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013542
https://www.nature.com/articles/srep01191
https://www.nature.com/articles/srep01191
https://www.nature.com/articles/srep01191
https://www.ncbi.nlm.nih.gov/pubmed/10023545
https://www.ncbi.nlm.nih.gov/pubmed/10023545
https://www.ncbi.nlm.nih.gov/pubmed/10023545
https://www.ncbi.nlm.nih.gov/pubmed/10023545
https://www.beckman.com/flow-cytometry/instruments?_ga=2.219157852.451475471.1554411516-1004518182.1554411516
https://www.bd.com/en-us/offerings/capabilities/single-cell-multiomics
http://www.bio-rad.com/en-us/category/flow-cytometry?ID=MC3PCU15
https://www.fluidigm.com/products/c1-system
https://www.fluidigm.com/products/polaris
https://www.fluidigm.com/products/polaris
https://1cell-bio.com/indrop/
https://1cell-bio.com/indrop/
https://www.10xgenomics.com/instrument/
https://www.10xgenomics.com/instrument/
https://www.10xgenomics.com/instrument/
http://www.bio-rad.com/en-us/product/ddseq-single-cell-isolator?ID=OKNWBSE8Z
http://www.bio-rad.com/en-us/product/ddseq-single-cell-isolator?ID=OKNWBSE8Z
http://www.bio-rad.com/en-us/product/ddseq-single-cell-isolator?ID=OKNWBSE8Z
https://www.dolomite-bio.com/product/nadia-instrument/
https://www.dolomite-bio.com/product/nadia-instrument/
https://missionbio.com/tapestri/
https://missionbio.com/tapestri/
https://www.bd.com/en-us/offerings/capabilities/single-cell-multiomics/bd-rhapsody-single-cell-analysis-system
https://www.bd.com/en-us/offerings/capabilities/single-cell-multiomics/bd-rhapsody-single-cell-analysis-system
https://www.bd.com/en-us/offerings/capabilities/single-cell-multiomics/bd-rhapsody-single-cell-analysis-system
https://cellmicrosystems.com/cellraft-air-system/
https://cellmicrosystems.com/cellraft-air-system/
https://www.celsee.com/systems/
https://www.celsee.com/systems/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836442/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836442/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836442/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836442/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836442/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836442/
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Library Preparation

The next critical step in the single-cell sequencing workflow is library preparation. The cell profiing approach
and specific sequencing method chosen are important considerations, as various options are available
(Table 6). The particular method chosen willlargely be determined by the experimental question.

QC of Prepared Libraries

Accurate assessment of both quality and quantity of prepared libraries isimportant to maximize sequencing
data quality and output. The Fragment Analyzer (Advanced Analytical) is a proven solution for simultaneous
qualification and quantification of DNA and RNA during library preparation for lllumina sequencing workflows
(Figure 3). 3 The Bioanalyzer (Agilent Technologies) is another option for library QC. Both instruments have
advantages over traditional methods such as gPCR that include: accurate and sensitive quantitation of
DNA/RNA, size measurement of fragments, and detection of possible contaminants. 4

Regardless of the method chosen for library quantification and quality assessment, only high-quality libraries
should be subject to sequencing to ensure generation of reliable, high-quality data. Calculation of the
Genomic Quality Number (GQN) can assess genomic DNA samples as they relate to a user-defined,
application-specific threshold for “good quality DNA”. Similarly, the RNA Quality Number (RQN), orthe
equivalent RNA Integrity Number (RIN), are two metrics broadly accepted for assessing quality of RNA
samples. 13 After libraries have been assessed for quality and quantified, the appropriate amount can be
loaded for sequencing, which depends on the sequencing platform and flow cell.

Fragment Analyzer Bioanalyzer
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Figure 3: Library QC—Library QCtraces on the Fragment Analyzer (left) and Bioanalyzer (right) showing high-quality
sequencing libraries.
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Table 6: Amplification techniques for single-cell profiling

Transcriptome

Enrichment Sequencing

Commercial offering/Example

Method Description

method
Full-length Switching Mechanism at 5’ end of RNA Template (SMART) technology =~ Takara SMARTer cDNA Synthesis
RNA-Seq enables amplification of full-length cDNA Kits

mRNA end-tag

10X Genomics Chromium Single
Cell Gene Expression Solution (3’
WTA)

amplification Capture of MRNA by 3’ polyadenylated (poly(A)) tails enables 10X Genomics Chromium Single
(3" WTA or5’ sequencing of the coding transcriptome with strand-specific information  Cell Immune Profiling Solution (5’
WTA) WTA)
SureCell WTA 3’ Library Prep Kit for
the ddSEQ System
Targeted Various predesigned single-cell targeted RNA sequencing panels ) ) )
panels enable IR, T-cell, and breast cancer profiling, and more. BD Rhapsody Single-Cell Analysis
Immune repertoire sequencmg (IR—Sg_q) is a targeted sequ_encmg 10X Genomics Chromium Single
IR-Seq method used to quantify the composition of B or T-cell antigen receptor s .
. Celllmmune Profiling Solution
repertoires.
Genome
Method Description Commercial offering/Example
method
: ) : L Single cell transcriptome
MALBAC Multiple Annelellllng and Lg'oplr?g Based Amplification Cycle (MALBAC) amplification with MALBAG
enables quasilinear amplification of the whole genome from single cells. ) )
Yikon Genomics
Degenerate oligonucleotide-primed
PCR: general amplification of target
DOP-PCR Degenerate Oligonucleotide-Primed PCR (DOP-PCR) uses oligos of DNA by a single degenerate primer
partially degenerate sequence for whole genome amplification. Whole-genome amplification by
degenerate oligonucleotide primed
PCR (DOP-PCR)
10X Genomics Chromium Single
Cell CNV Soluti
Various predesigned single-cell targeted DNA sequencing panels (.9 . : outon ) :
Targeted - ) f : ; MissionBio Tapestri Designer for
enable profiling of hematologic malignancies, solid tumors, copy number .
Panels variation (CNV), and more Custom Single-Cell DNA Panels
' ’ Mission Bio Tapestri Single-Cell
DNA Panels
Epigenome
Method Description Commercial offering/Example
method
10XG ics Chromium Singl
Assay for Transposase-Accessible Chromatin using Sequencing Cell A_ﬁ;\gﬂggﬁmor:omwm nge
ATAC-Seq (ATAC-Seq) assesses chromapn acceSS|b|!|ty gengmewde by using a Abcam ATAGC-Seq protocol
transposase to insert sequencing adapters into regions of open . )
) Bio-Rad SureCell ATAC-Seq Library
chromatin. }
Prep Kit
Hi-C: a comprehensive technique to
HiC combines chromosome conformation capture (3C) with NGS to czg;ur;eetshe conformation of
HiC enable unbiased identification of chromatin interactions across the 9 )

genome.

Comprehensive mapping of long-
range interactions reveals folding
principles of the human genome.

Protein detection

Commercial offering/Example

Method Description method
AbSeq DNA-tagged antibodies enable protein profiling by NGS BDAbseq antibody-oligonucleotide
conjugates
. . ) . imult it
Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE- tSr;mn:c:gteo?rL:: fg:;ii:;im in
CITE-Seq Seq) uses oligonucleotide-labeled antibodies to convert protein

detection into a quantitative assay by NGS

single cells.
cite-seg.com

For Research Use Only. Not for use in diagnostic procedures.
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https://www.takarabio.com/products/cdna-synthesis/cdna-synthesis-kits/smarter-cdna-synthesis-kits
https://www.takarabio.com/products/cdna-synthesis/cdna-synthesis-kits/smarter-cdna-synthesis-kits
https://www.10xgenomics.com/product-list/#single-cell
https://www.10xgenomics.com/product-list/#single-cell
https://www.10xgenomics.com/product-list/#vdj
https://www.10xgenomics.com/product-list/#vdj
https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/surecell-wta-ddseq.html
https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/surecell-wta-ddseq.html
https://www.bd.com/en-us/offerings/capabilities/single-cell-multiomics/bd-rhapsody-single-cell-analysis-system
https://www.10xgenomics.com/solutions/vdj/
https://www.10xgenomics.com/solutions/vdj/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378937/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378937/
http://www.tataa.com/wp-content/uploads/2012/10/Manual_MALBAC-Single-Cell-WGA-Kit-YK001AB_V2015.pdf
https://www.ncbi.nlm.nih.gov/pubmed/1639399
https://www.ncbi.nlm.nih.gov/pubmed/1639399
https://www.ncbi.nlm.nih.gov/pubmed/1639399
http://cshprotocols.cshlp.org/content/2008/1/pdb.prot4919.full
http://cshprotocols.cshlp.org/content/2008/1/pdb.prot4919.full
http://cshprotocols.cshlp.org/content/2008/1/pdb.prot4919.full
https://www.10xgenomics.com/solutions/single-cell-cnv/
https://www.10xgenomics.com/solutions/single-cell-cnv/
https://missionbio.com/panels/custom-panels/
https://missionbio.com/panels/custom-panels/
https://missionbio.com/panels/catalog-panels/
https://missionbio.com/panels/catalog-panels/
https://www.10xgenomics.com/solutions/single-cell-atac/
https://www.10xgenomics.com/solutions/single-cell-atac/
https://www.abcam.com/epigenetics/epigenetics-application-spotlight-atac-seq
http://www.bio-rad.com/en-us/product/surecell-atac-seq-library-prep-kit?ID=PEXSR1MC1ORV
http://www.bio-rad.com/en-us/product/surecell-atac-seq-library-prep-kit?ID=PEXSR1MC1ORV
https://www.ncbi.nlm.nih.gov/pubmed/22652625
https://www.ncbi.nlm.nih.gov/pubmed/22652625
https://www.ncbi.nlm.nih.gov/pubmed/22652625
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Summary

Acritical step in the single-cell sequencing workflow is isolation of individual cells. Awide selection of methods
isavailable, and the specific protocol should be selected and optimized based on the experimental question.
Consideration should be given to the inclusion of QC measurement of prepared libraries. After high-quality
single-celllibraries have been prepared, researchers can proceed with confidence to sequencing. Ifyou
would like to discuss various single cell sequencing methods and how they can be integrated with your
research, contact yourlocal lllumina representative.
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Step 3: Sequencing

Introduction

After viable single cells have beenisolated and the genetic material ofinterest has been extracted and libraries
have been prepared, the crucial step of sequencing can be performed. All llumina sequencing platforms use
sequencing by synthesis (SBS) chemistry, responsible for generating more than 90% of the world’s
sequencing data. 8 llumina SBS chemistry is a proprietary method that detects single bases asthey are
incorporated into growing DNA strands in a massively parallel fashion. lllumina sequencing systems can
deliver data output ranging from 300 kilobases up to multiple terabases in a single run, depending on
instrument type and configuration. This chapter presents the lllumina sequencing systems that are
appropriate for single-cell studies and discusses important considerations to ensure a successful sequencing
run.

Compatible sequencing systems

Although all lllumina sequencing systems are capable of sequencing single-celllibraries, the sequencing
system chosen for a single-cell sequencing experiment will be determined largely by the research question
and scale ofthe study. The following systems are recommended for single-cell sequencing studies (Figure 4).

NextSeq™ 550 System

The NextSeq 550 System delivers the power of high-throughput sequencing with the speed, simplicity, and
affordability of a benchtop NGS system. The NextSeq 550 System fitsinto research laboratories, without
need for specialized equipment. It supports mid- to high-throughput sequencing applications and is ideal for
smaller scale single-cell sequencing studies.

Learn more about the NextSeq 550 System at www. illumina.com/systems/sequencing-
platforms/nextseq.html

NovaSeq™ 6000 System

The NovaSeq 6000 System represents the most powerful, simple, scalable, and reliable high-throughput
lllumina sequencing platform to date, producing outstanding data quality. It offers multiple flow celltypes and
run configurations, from 800 million reads with the SP flow cellto 10 billion reads with the S4 flow cell (single-
read mode). The unprecedented output and throughput of the NovaSeq 6000 System makes it ideal for
extensive screening studies, such as pharmaceutical screens, cellatlas studies, and other large-scale
experiments.
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Learn more about the NovaSeq 6000 System at www . illumina.com/systems/sequencing-
platforms/novaseq.html

iSeq™ 100 System

The compact iSeqg 100 System combines complementary metal-oxide semiconductor (CMOS) technology
with the proven accuracy of lllumina SBS chemistry to deliver high-accuracy data with fast turnaround times
inthe smallest and most affordable sequencing system in the llumina portfolio. The iSeq 100 Systemisideal
for performing library QC before committing to a full-scale sequencing run on the NovaSeq 6000 System,
which canlead to more consistent results and help ensure a successful experiment.

Learn more about the iSeq 100 System at www.illumina.com/systems/sequencing-
platforms/iseq.html

iSeq 100 System NextSeq 550 System  NovaSeq 6000 System

Figure 4: Compatible lllumina sequencing systems for single-cell sequencing —Illumina NGS systems deliver high-
accuracy data with flexible throughput and simple, streamlined workflows compatible with single-cell sequencing
experiments of any scale.

Considerations for sequencing
Experiment planning
Read depth

Sequencing coverage for traditional or bulk samples describes the average number of reads that align to, or
"cover," known reference bases. NGS coverage level often determines whether variant discovery can be
made with a certain degree of confidence at particular base positions. Sequencing coverage requirements
vary by application. At higher levels of coverage, each base is covered by a greater number of aligned

sequence reads, or a greater “depth,” so base calls can be made with a higher degree of confidence. ! 6
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For various single-cell sequencing applications, read depth is discussed not in the number of reads per base,
butinthe number ofreads per cell. The required sequencing depth for a single-cell sequencing run will
depend on severalfactors, including sample type, the number of cells to be analyzed, experimental
objectives, and more. For single-cell RNA-Seq, it hasbeen reported that unbiased cell-type classification
within a mixed population of distinct celltypes can be achieved with asfew as 10,000 to 50,000 reads per
cell.'” Such lower read depth canbe practicaland economicalifthe experimental objective istoidentify rare
cellpopulations or to scan cells for presence of mixed populations. However, thisread depth may not be
sufficient when more homogeneous cell populations are studied, and it is unlikely to provide detailed
information on gene expression within any given cell. In such cases deeper sequencing may be required for
improving cellidentification and detection of genes with low expression. Indeed, it has been reported that
500,000 reads per cellare sufficient to detect most genes expressed ina cell, and 1,000,000 reads per cell
approaches sequencing saturation, enabling the estimation of the mean and variance of gene

expression. 819 Ultimately, the required sequencing depth willlargely depend sample type and
experimental objective and willneed to be optimized for each study.

Paired-end vs. single-read sequencing

Single-read sequencing involves sequencing DNA from only one end and is the simplest way to utilize lllumina
sequencing. Single-read sequencing delivers large volumes of high-quality data, faster and cheaper than
paired-end sequencing.2o Single-read runs can be a good choice for certain methods such as small RNA-
Seq or chromatinimmunoprecipitation sequencing (ChIP-Seq). In contrast, paired-end sequencing involves
sequencing both ends of DNA fragmentsin a library and aligning the forward and reverse reads asread pairs.
Thisresultsin better alignment of reads, especially across repetitive, difficult-to-sequence regions. Allllumina
NGS systems are capable of paired-end sequencing (Figure 5).

Paired-End Reads Alignment to the Reference Sequence

N ———
_——
Read 1 _—
L —

Reference m—— - —

~ Repeats
Read 2

Figure 5: Paired-end sequencing and alignment — Paired-end sequencing enables both ends of the DNA fragment to be
sequenced. Because the distance between each paired read is known, alignment algorithms can use this information to
map the reads over repetitive regions more precisely.

In addition to producing twice the number of reads for the same time and effort inlibrary preparation,
sequencesaligned asread pairs enable detection of insertion-deletion (indel) variants, which is not possible
with single-read data.?’ Furthermore, paired-end sequencing facilitates detection of genomic
rearrangements such asinsertions, deletions, and inversions. Paired-end RNA sequencing enables
discovery applications such as detecting gene fusions, novel transcripts, and novel splice isoforms.??
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Cluster density

The massively parallel nature of lllumina sequencing is enabled by cluster generation on the surface of flow
cells. Historically, during cluster generation, adapter-ligated library elements hybridized to complementary
oligonucleotides on the surface ofa flow cell. Each attached library fragment acted as a “seed” and, through a
process called bridge amplification, was amplified to generate a clonal cluster containing thousands of
identical fragments (Figure 6). After cluster generation was complete, the flow cell contained milions to billions
of clustersonits surface.

Cluster Amplification

Lo

Flow Cell Clusters

Figure 6: Cluster generation— Library fragments are loaded onto aflow cell and hybridize to the flow cell surface. Each
bound fragments is amplified into a clonal cluster through bridge amplification.

Ideally, clusters are of similar size and spaced well apart from each other to achieve accurate resolution during
imaging. In reality, DNA clusters are randomly distributed across these “nonpatterned” flow cells with many
clustersin close proximity to neighboring clusters, especially ifthe sample is overloaded, making it difficult to
discermn individual clusters from each other. The NextSeq 550 System uses nonpatterned flow cells.

Tomake more effective use of the flow cell surface space, llumina created patterned flow celltechnology.
Patterned flow cells feature patterned nanowells etched into the surface. Each nanowell contains DNA
probesused to capture prepared DNA strands for amplification during cluster generation. The area between
the nanowells is devoid of DNA probes. This process ensures that DNA clusters only form within the
nanowells, providing even, consistent spacing between adjacent clusters and allowing accurate resolution of
clusters duringimaging. The result is maximal use of the flow cell surface leading to overall higher clus’[ering.28
The NovaSeq 6000 System uses patterned flow cells.

Particularly with nonpatterned flow cells, the density of clusters on a flow cell significantly impacts data quality
and yield from a run and is a critical metric for measuring sequencing performance. It influences run quality,
reads passing filter, Q30 scores, and total data output. Performing a run at optimal cluster density involves
finding a balance between underclustering and overclustering. The goalisto sequence at a high enough
density to maximize total data output, while maintaining a low enough density to avoid overclustering. The
recommended cluster density for the NextSeq 550 System is 170-220 K/mm?.%* Because patterned flow
cells provide optimal cluster density, they are less susceptible to underclustering and overclustering.
However, libraries should stillbe loaded at recommended concentrations for optimal performance. Most
commercial single-celllibrary preparation kits provide cluster density recommendations for each lllumina
sequencing system.
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Run QC
Percent passing filter

Percent passing filter (% PF) is animportant sequencing QC metric that refers to the number of clusters that
have passed afilter and will be retained for downstream analysis. With nonpatterned flow cells, Real-Time
Analysis software evaluates clusters duringimage analysis early in the sequencing run during template
generation. Any dim or low-quality clusters are removed, effectively acting as a prefiltration step, resultingin
relatively high %PF values. With patterned flow cells, fixed cluster locations eliminate the need for template
generation, sothere is no prefiltration of underperforming clusters. Instead, suboptimal clusters are fittered
during the later stage of chastity filtration. Chastity is defined as the ratio of the brightest base intensity divided
by the sum of the brightest and second brightest base intensities. Clusters “passfiltter” if no more than one
base callhas a chastity value below 0.6 in the first 25 sequencing cycles. Thisfiltration process removes the
least reliable clusters from the image analysis results. Consequently, for patterned flow cells the %PF metric
willbe lower (than for nonpatterned flow cells), but it will not affect performance or data quality (Figure 7).25

A. B. Patterned flow cell Nonpatterned flow cell

=

Template
Generation

Cluster
Filtration

Bulousnbag

Figure 7: Clusters passing filter on patterned and nonpatterned flow cells— A patterned flow cells with nanowells
etched into its surface (A). With nonpatterned flow cells, poor quality or dim clusters are filtered during template
generation (B). With patterned flow cells, empty wells and suboptimal clusters are filtered during the later stage of
chastity filtration, which leads to alower %PF metric (B).
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Percent = Q30

Sequencing quality scores measure the probability that a base is called incorrectly. With SBS chemistry,
each base inaread isassigned a quality score by a phred-like algorithm, ?®:2” similar to that originally
developed for Sanger sequencing experiments. The sequencing quality score of a given base, Q, is defined
by the following equation:

Q=-10log,(e)

Where e is the estimated probability of the base callbeing wrong. A higher Q-score indicates a smaller
probability of error (TABLE 6). llumina SBS chemistry delivers high accuracy, with a vast majority of bases
scoring Q30 and above (% = Q30). However, the Q-score may not be the most appropriate metric for
assessing sequencing results for single-celllibraries, as significant variability in Q30 scores can be observed
due todifferencesinlibrary chemistry, barcode design, and sample preparation. Most commercial single-cell
library preparation kits provide guidance on key metrics to assess a high-quality experiment including Q30
scores, valid barcodes, estimated number of cells, fractions of reads in cells and total genes detected. ?:29

For more information on sequencing quality scores, read the following technical notes:
« Quality Scores for Next-Generation Sequencing
« Understanding llumina Quality Scores

Instrument control software

Instrument control software is preinstalled on all llumina sequencing systems. Control software guides users
through the stepstoload the flow celland reagents, and provides an overview of quality statistics for
monitoring as a sequencing run progresses. The software can also generate image analysis, base calling, and
base call quality automatically.

Summary

llumina sequencing systems offer high data accuracy with flexible throughput to deliver a proven NGS
solution for single-cell sequencing studies, regardless of scale. Itisimportant to consider read depth, whether
single or paired-end sequencing is required before committing to a sequencing run, to balance cost with
sequencing parameters best-suited to meet experimental objectives. Additional sequencing metrics such as
cluster density, %PF, and % = Q30 (and alternative metrics) should be considered before, and evaluated
after, sequencingis performed to help ensure successful results. After high-quality, reliable sequencing data
are obtained, researchers can proceed with data visualization, analysis, and interpretation.
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Step 4: Data Analysis, Visualization, and

Interpretation

Introduction

After the single-cell sequencing runis complete, downstream analysis can be performed. Generally, the
analysis pipeline for single-cell sequencing experiments involves three phases: primary analysis (base calling),
secondary analysis (demultiplexing, alignment, and genetic characterization), and tertiary analysis (data
visualization and interpretation) (Figure 8). There isno one, correct way to carry out an analysis pipeline for
single-cellsequencing experiments. Many approaches and software programs are available for each step in
the pipeline. The research objective, single-cellisolation platform, and general lab considerations willlargely
determine the specific pipeline used. This chapter outlines the stepsinvolved in single-cell sequencing
analysis and some of the tools available.

Primary analysis: o File conversion
Raw data files (bcl) are

File Conversion converted to fastq format
.bel file —» .fastq file for downstream analysis.

Secondary analysis: e Demultiplexing
demultiplexing If samples were multiplexed
(if applicable) for sequencing, resulting read
files are demultiplexed prior to
downstream analyses.

Sequence alignment e Sequence Alignment
Reads are mapped and aligned
to a reference genome.

Dataset QC o Dataset QC and Filtering

and filtering Noncellular barcodes and low-quality
cells are excluded from downstream
analyses by various metrics.

Initial genetic e Genetic Characterization
characterization QC’d datasets are analyzed for genomic
variants, gene expression, chromatin
accessibility, protein expression, etc.

Tertiary Analysis: o Data Visualization
Data visualization Multidimensional data plots enable
and interpretation clustering of c:_ells and identification
of subpopulations.

Figure 8: Example single-cell sequencing analysis pipeline— An example of an analysis pipeline for single-cell sequencing
experiments from initial file conversion, primary, secondary, and tertiary analysis.
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Primary analysis: file conversion
*.bcl file format

lllumina sequencing systems generate raw data files in binary base call (BCL) format. This sequencing file
format contains both the base calland the quality of that base callfor each cluster on a per-cycle basis. While
the BCL file format is efficient for the sequencing system, it requires conversion to FASTQ format for use with
user-developed or third-party data analysis tools.

* fastq file format

FASTQ s atext-based sequencing data file format that stores both raw sequence data and quality scores.
FASTQ files have become the standard format for storing NGS data from lllumina sequencing systems, and
can be used asinput for a wide variety of secondary data analysis solutions.

bcl2fastg conversion software

bcl2fastqg software coverts BCL files to FASTQ files for downstream analysis, and can begin this process as
soon as the first read has been completely sequenced. If samples were multiplexed, the first step in FASTQ
file generation is demultiplexing. Multiplexed sequencing enables multiple individual samplestoberunina
single lane of a flow cell, greatly increasing a systems output. Demultiplexing assigns clusterstoa sample,
based onthe cluster’sindex sequence. After demultiplexing, the assembled sequences are written to
FASTQfiles per sample. If samples were not multiplexed, the demultiplexing step does not occur, and, for
each flow celllane, all clusters are assigned to a single sample.®®

Secondary analysis: demultiplexing, alignment, and QC

Single-cellsequencing data can be instantly transferred, stored, and analyzed securely in BaseSpace™
Sequence Hub, the lllumina cloud-based genomics computing environment. BaseSpace Sequence Hub
provides alarge collection of BaseSpace Apps. Commercial and open-source tools support a range of
common data analysis needs such as alignment, variant calling, and more. These Apps feature intuitive push-
button user interfaces designed to be used without the need for bioinformatics expertise.

Read mapping and alignment to a reference genome is often the first step in data analysis. Various software
applications are available, including the Burrows-Wheeler Alignment (BWA)81 algorithm, used in the BWA
Aligner BaseSpace App, and Spliced Transcripts Alignment to a Reference (STAR)®? algorithm, included in
the RNA-Seq Alignment BaseSpace App (Table 7).
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Table 7: Primary and secondary analysis BaseSpace Apps

BaseSpace App Description
BWA The BWA Aligner App aligns samples (consisting of FASTQ files) using the BWA-MEM alignerto a
Aligner reference genome, including a custom reference genome created from imported FASTA files.

The RNA-Seq Alignment workflow performs the following: read mapping using the STAR aligner,
RNA-Seq  quantification of reference genes and transcripts using salmon, variant calling (SNVs and small
Alignment  indels) using the Strelka Variant caller, fusion calling with Manta, and QC metrics from Picard and
othersources.

The Single Cell RNA app is designed to analyze samples prepared using the SureCell Whole

:w’igﬁl lo- Transcriptome Analysis 3’ Library Preparation kit. This app performs cell and gene counting,
Cell g filtering, and calculates and reports metrics for the lllumina Bio-Rad Single-Cell Sequencing

Solution.

Various BaseSpace applications and third-party programs are available for cellidentification and counting

and mapping of the genetic component of interest, such as the following.
« RNA-Seq: cellbarcodes and UMIs (if used) are demultiplexed to build a matrix of genes expressed in each
cell
« ATAC-Seq: adapter sequencesinserted into areas of open chromatin are identified in each cell
o CITE-Seq: antibody, UMI, and cellbarcodes are demultiplexed to map protein expressionin each cell
« Targeted DNAsequencing: cellbarcodesare demultiplexed to build a matrix of genomic variants by each
cell
For RNA-Seq, the SureCell RNA Single-Cell App supports data analysis for the llumina Bio-Rad Single-Cell
Sequencing Solution. The SureCell RNA Single-Cell App enables streamlined data analysis and includes
sequencing QC metrics, assignment of unique transcripts to single cells, and options for identification of

subpopulations and differentially expressed genes.

Analysis QC metrics

Before downstream analyses, several QC metrics should be performed to help determine the quality ofa
single-cell sequencing data set and filter out poor quality data points/cells.

Expected Library Size and Number of Expressed Genes

Every celltype has an expected library size and, for RNA-Seq, a typical number of genes that are expressed.
Cells that fall outside of that typical, expected range (either too low or too high) may represent low-quality
“cells” that can be excluded from downstream analyses, or conversely, may represent unusual cells of
interest that may warrant further investigation (Figure 9).
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Figure 9: Cellfiltering by library size or no. of expressed genes —Representations of distribution plots of cells either by
library size (left) or no. of expressed genes (right). Cell types will have a typical, expected value for each parameter. Cells
falling outside of the expected range may be poor quality, cell fragments, or unusual cells of interest.

Proportion of reads aligning to mitochondria/ribosomes

Another QC metric is the proportion of reads that map to genes in the mitochondrial genome or reads that
mayp toribosomal RNAs (Figure 10). High mitochondrial and ribosomal proportions are indicative of poor-
quality cells, possibly because of increased apoptosis, which can be excluded from downstream analyses.
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Figure 10: Cellfiltering by mitochondrial or ribosomal proportion—Representations of distribution plots of cells either
by proportion of reads mapping to the mitochondrial genome (left) or ribosomes (right). Cells with a high mitochondrial

or ribosomal proportion are likely poor quality.
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Knee plot

Plotting genic UMI counts against cell barcodes in descending order by genic UMI count enables statistical
identification of “true” cells and exclusion of noncellular barcodes (Figure 11). Cellbarcodes above the
threshold (left of the knee) have genic UMI that represent true cells, while those below the threshold (to the
right of the knee) have genic UMI counts below what is expected for that particular cell.
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Genic UMI Count
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1e+0 L 1

T
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L1 e | S e L A
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Cell Barcode in Descending Order by
Genic UMI Gount

Figure 11: Filtering out noncellular barcodes — Cell barcodes to the left of the threshold (vertical red line) have genic UMI
counts inthe thousands, representing true cells. Cell barcodes to the right of the threshold have genic UMI counts of 1-
100, typically below what is expected for live, intact cells, representing empty beads.

Evaluating doublets
Number of genes per cell

Forany given celltype thereisa typical, expected number of expressed genes. Historically, thishasbeen
used to detect and exclude doublets from downstream analyses.?® However, while using gene number per
cellcan be useful for single-cell sequencing experiments with a homogenous cell population, eg, cultured cell
lines, it can be problematic with complex heterogeneous tissues. Indeed, while a majority of viable single cells
may fallin a natural distribution around an expected number of expressed genes, n, cells observed outside
that distribution, eg, with roughly twice that number, 2n, may represent cells of interest that warrant further
investigation and characterization, eg, circulating cancer cellsin a blood sample (Figure 12). Ultimately, given
the lack of a credible computational method for detecting doublets, researchers should minimize doublet
rates by experimental design. >3

For Research Use Only. Not for use in diagnostic procedures. 24

sisA|euy eleq



Enrichment Sequencing

No. of cells

/\

n 2n
No. of genes per cell

Figure 12: Doublet exclusion by gene content —Representation of distribution plot of cells by gene content. “Cells” to
the right of the threshold (vertical red line) have twice the expected number of genes per cell and are likely doublets

Cross-species analysis

Crosstalk represents the percentage of doublet cells in droplets or microwells across a given experiment. An
effective way to determine cellular crosstalk is by mixing cells from two different speciesin one sample ata 1:1
ratio. When analyzing sample types that include cells from two different species, any cells detected with UMIs
from both species represent doublets (Figure 13).
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Figure 13: Doublet exclusion by species-specific UMIs—In a cell mixing experiment with cells from two different
species, detection of cells with UMIs mapping to both species (purple dots) represent doublets.

For Research Use Only. Not for use in diagnostic procedures. 25

sisA|euy eleq



Enrichment Sequencing

Tertiary analysis: data visualization and interpretation

Afterreads have been aligned to a reference genome and secondary analysis has been performed, including
data QCtoremove noncellular barcodes and/or poor-quality cells, a good quality data set can be visualized
and explored to gain insights into the biology of the cells being studied. There are many free and commercially
available software programs available (Table 8and Table 9).

Seurat

Seuratisan R based single cell RNA-Seq analysis software designed to assess cellular heterogeneity with a
number of tools such as normalization, dimensionality reduction approaches, plots, heatmaps, and data
integration tools.®4 Seurat uses dimensionality reduction to make multidimensional data (eg, thousands of
cells, each with thousands of expressed genes) understandable by mathematically reducing the number of
dimensionsinto a two or three dimensional representation. The resulting clustering of cells into groups
correspond to particular cell states or types with characteristic features. (Figure 14).

@ CD4+T Cells
@ CD14+ Monocytes
@ Cytotoxic CD8 T Cells
@ BCels
25 1 : t;g:f*me"s Cell population Markers % of cells
@ FOGRAx Monooyes CD4+ T Cells CDBA-|IL7R+|CD3D+  34.3%
N <% | @ Dendritic Cells CD14+Monocytes CD14+|LYZ+ 20.9%
u - |@Megskaneostes “CPg L Cytotoxic T Cells  CD8A+|GZMB+|CD3D+  12.9%
2 o BCells MS4A1+ 12.5%
IL7+/CD8+T Cells CD8A+|IL7R+|CD3D+ 9.0%
NK Cells NKG7+|GNLY + 4.7%
FCGR3A+ Monocytes FCGR3A+|MS4A7+ 2.5%
-25 Dendritic Cells FCER1A+ 1.8%
Megakaryocytes PPBP+ 1.3%

t-SNE-1

Figure 14: Unbiased Cluster Analysis of PBMCs in Seurat — Nine cell clusters were identified with 3354 cells down-
sampled to approximately 70,000 reads per cell, with aresolution setting of 0.80 and 100 genes as a cutoff. Cells
identified with Seurat are listed inthe table.

Advanced data visualization with SeqGeq software

SeqGeq Software is a desktop application for advanced data analysis, exploration, and visualization of
single-cellgene expression data developed by FlowdJo, LLC (now part of BD Biosciences). SeqGeq Software
features powerful data reduction and population identification tools. Direct integration with BaseSpace
Sequence Hub enables visualization and analysis of expression data with statistic color-mapping of individual
cells, summary heat maps, and drag-and-drop report editors (Figure 15).
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Figure 15: Simplified Clustering Analysis in SeqGeqg—(A) Unbiased clustering analysis of PBMCs based on differential
expression of cell-specific genes/markers. (B) Example of using gene set enrichment to identify B cells (green) based on
expression of B-cell genes (blue corresponds to low expression and red to highin heat map). (C) B cells identified in (B)
undergo further unbiased clustering using PCA guided t-SNE to identify subpopulations of B cells.

Table 8: Open-source tertiary analysis software

Software Provider

Description

Seuratis an R package designed for QC, analysis, and exploration of

Seurat Satija Lab single-cell RNA-Seq data.33 Seurat aims to enable users to identify and
satijalab.org/seurat interpret sources of heterogeneity from single-cell transcriptomic
measurements, and to integrate diverse types of single-cell data.
t-distributed stochastic neighborhood embedding (t-SNE) is a
computational technique that visualizes high dimensional data by giving
t-SNE Van derMaaten Lab each data point a location in a two- or three-dimensional map.®®t-SNEis

lvdmaaten.github.io/tsne

commonly used to visualize subpopulations with single-cell sequencing
data.

GitHub

UMAP github.com/Imcinnes/umap

Uniform manifold approximation and projection (UMAP) is an algorithm for
analysis of high dimensional data and an alternative to t-SNE, offering

rdrr.io/cran/Seurat/man/RunUMAP.html faster computation times. 6

Trapnell Lab —cole-trapnell-

Monocle is an R-based single cell RNA-Seq analysis software designed to

Monocle : ) determine cell developmental trajectory. Monocle is ideal for experiments
lab.github.io/monocle-release . )
where there are known beginning and terminal cell states.
The Human Cell Atlas is a consortium effort that will curate a data
. coordination platform intended to provide four key components: intake
Human  Broad Institute —

Cell Atlas www.humancellatlas.org

services for data submission, synchronized data storage across multiple
clouds, standardized secondary analysis pipelines, and portals for data
access, tertiary analysis, and visualization.

Table 9: Commercially available tertiary analysis software

Software Provider

Description

BD
SeqCeq Biosystems

SeqGeq Software is a desktop application foradvanced data analysis, exploration, and visualization of
single-cell gene expression data. SeqGeq offers powerful data reduction and population identification
tools.

Partek

Flow Partek

Partek Flow is a software analysis solution for NGS data applications. It has robust statistical algorithms,
information-rich visualizations, and cutting edge genomic tools enabling researchers of all skill levels to
confidently perform data analysis.

CytoBank CytoBank,
Platform  Inc.

Cytobankis a cloud-based platform designed for analysis and visualization of multiple single-cell data
sets simultaneously.

é?;lpe 10X The Loupe Cell Browser is designed to enable users to quickly and interactively find significant genes,
Genomics celltypes, and substructure within single cell data.
Browser
Tapestri . . TapestriInsightis a software solution for single-cell DNA analysis. It includes sequence import, data
' MissionBio ) . N
Insight analysis, and visualization.
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https://satijalab.org/seurat/
https://lvdmaaten.github.io/tsne/
https://github.com/lmcinnes/umap
http://kcpa1-dsndc-fda95-124ee-493aa-8b0f0-cf7b3-dd82e/
http://cole-trapnell-lab.github.io/monocle-release/
http://cole-trapnell-lab.github.io/monocle-release/
https://www.humancellatlas.org/
https://www.flowjo.com/solutions/seqgeq
https://www.flowjo.com/solutions/seqgeq
http://www.partek.com/partek-flow/
https://cytobank.org/
https://cytobank.org/
https://support.10xgenomics.com/genome-exome/software/visualization/latest/what-is-loupe
https://support.10xgenomics.com/genome-exome/software/visualization/latest/what-is-loupe
https://missionbio.com/panels/software/

Enrichment Sequencing

For more information about stepsin the single-cell sequencing analysis pipeline, read the Single-Cell
RNA Data Analysis Workflow Technical Note

Tosee an example of secondary and tertiary analysis in a single-cell sequencing experiment, read
the Single-Cell Sequencing of Peripheral Blood Mononuclear Cells Application Note

Summary

The precise analysis pipeline used for a single-cell sequencing experiment is variable and can be customized
based onthe research objectives of the study. Generally, this pipeline includes primary, secondary, and
tertiary phases, in which sequences are aligned, genetic components are characterized, and data are
visualized and explored, respectively. Ifyou would like to discuss various single cell sequencing analysis
optionsand how they can be integrated with your research, contact yourlocal lllumina representative.
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https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/single-cell-rna-data-analysis-tech-note-1070-2017-001.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/single-cell-rna-data-analysis-tech-note-1070-2017-001.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/surecell-rna-seq-pbmc-app-note-1070-2017-004.pdf

Overthe past decade there has been significant advancement in the area of single-cell characterization and
study, with development of new technologies for cellisolation and new methods and applications for single-
cellsequencing. These advances have stimulated the launch of numerous, accessible commercial solutions
for every step of the single-cell sequencing workflow, from tissue preparation through data analysis. With
increasing options for single-cellisolation and interrogation, there has been aremarkable diversification of
experimental protocols, each with inherent strengths and weaknesses. Researchers therefore face
decisions such as cellthroughput, sequencing depth, required transcript length, whether epigenetic or
protein-level measurements should be included, and more.

Tofully harness the potential of single-cell sequencing to elucidate complex biological systems, careful
experimental design and optimization of every step of the workflow is critical. Researchers must have clearly
defined biological objectives and a rational experimental design to make informed decisions about the
optimalapproach for their research question. Here, we have outlined every step of the single-cell sequencing
workflow and discussed important considerations and potential challenges for each, presented commercial
offerings, and offered advice for designing and executing a successful single-cell study. lllumina is committed
toharnessing the power of NGS for single-cell sequencing, to build a deeper understanding of cellular and
molecular biology, complex diseases, and environmentalimpacts on human health.
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Learn more

How do | get started with single-cell sequencing?

To start planning your single-cell sequencing experiment, take advantage of these resources:
« Buyer'sGuide to Simple, Customized RNA-Seq Workflows
« Buyer'sGuide to Next-Generation Sequencing Systems
« Single-CellRNA Data Analysis Workflow Technical Note
o Library Prep and Array Kit Selector Tool

What if | need help during a sequencing run or with data analysis?

Whether you have basic data analysis questions that require immediate attention or you have advanced
questions requiring in-depth consultations, llumina can help. Beyond immediate phone and email support,
llumina customer service and support teams provide a full suite of expedient solutions from initial trainings, to
instrument support, personalized consultation, and ongoing NGS education. llumina customer support
offeringsinclude:

lllumina Technical Support

Global, 24/5 phone and email support in the Americas, Europe, and Asia-Pacific.

lllumina Technical Support specialists can perform desktop sharing with GoToAssist —a powerful tool for
quick identification and diagnosis of issues over the phone with live desktop sharing. For faster case handling,
enter your case number at the main phone menuto be routed directly to the Technical Support specialist
handling your case.

lllumina University Training

« Instructor-Led Training at your chosen facility

« Instructor-Led Training at an lllumina Training Center
« On-Line courses

o Webinars

lllumina Consulting Services

« Proof-of-Concept Services forinstrument and library preparation testing

Concierge Custom Design Service for design assistance and product optimization

llumina Bioinformatics Professional Services for bioinformatics consultation and/or training
lllumina Genomics IT Consulting Services for genomics T solutions

Installation Qualification (IQ), Operational Qualification (OQ), and Performance Qualification (PQ)
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https://www.illumina.com/content/dam/illumina-marketing/documents/products/other/rna-sequencing-workflow-buyers-guide-476-2015-003.pdf
https://www.illumina.com/landing/nextseq500/nextseq500_5.html
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/single-cell-rna-data-analysis-tech-note-1070-2017-001.pdf
https://www.illumina.com/library-prep-array-kit-selector.html

Who can | talk to for more information on single-cell sequencing?

To speak with an llumina representative about single-cell sequencing solutions, callthe lllumina Customer
Solutions Center at 1.800.809.4566 (North America) or 1.858.202.4566 (Outside North America) and start
planning your single-cell sequencing experiments today.
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Glossary

chastity filtration: A process where suboptimal clusters on patterned flow cells are filtered and removed from
image analysis. Chastity is defined as the ratio of the brightest base intensity divided by the sum of the
brightest and second brightest base intensities. Clusters “passfilter” if no more than one base callhas a
chastity value below 0.6 in the first 25 sequencing cycles.

cluster density: The number and distribution of clusters on a flow cell. Cluster density is an important metric for
sequencing performance, particularly with nonpatterned flow cells, as it can significantly impact data quality
and yield from a sequencing run.

cluster generation: Aprocess where libraries are loaded onto flow cellsand fragments are captured on alawn
of surface-bound oligos complementary to the library adapters. Each fragment isamplified into distinct,
clonal clusters through bridge amplification. Each cluster contains up to 1000 sample strands, usually 120-
170base pairsin length

complementary metal-oxide semiconductor (CMOS) technology: CMOS technology enables one-channel
sequencing chemistry, which supports lower sequencing costs in a compact system while maintaining high-
accuracy data.

flow cell: A glass slide with one, two, or eight physically separated lanes, depending on the instrument
platform. Each lane is coated with alawn of surface bound, adapter-complimentary oligos. A single library or
a pool of up to 96 multiplexed libraries can be run perlane, depending on application parameters.

fluorescence activated cell sorting (FACS): Atechnology that provides qualitative and quantitative
measurement of cellular characteristics such as size, internal complexity, DNA/RNA content and a wide
range of membrane-bound and intracellular proteins via detection of autofluorescence or fluorochrome-
conjugated antibodies.

Genomic Quality Number (GQN): A calculation developed by Advanced Analytical Technologies, Inc. (AATI)
for use with the Fragment Analyzer for assessing quality of DNA samples.

index/barcode/tag: A unique DNA sequence ligated to fragments within a sequencing library for downstream
in silicosorting and identification.

multiplexing: Atechnique toincrease throughput of sequencing systems where large numbers of libraries with
unique indexes can be pooled together, loaded into one lane of a sequencing flow cell, and sequenced in the
same run. Reads are later identified and sorted via bioinformatic software in a process called demultiplexing.

next-generation sequencing (NGS): A non-Sanger-based high-throughput DNA sequencing technology.
Compared to Sanger sequencing, NGS platforms sequence as many as bilions of DNA strands in parallel,
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yielding substantially more throughput and minimizing the need for the fragment-cloning methods that are
often used in Sanger sequencing of genomes.

patterned flow cell: Aflow cellthat contains bilions of nanowells at fixed locations, providing even cluster
spacing and uniform cluster size to deliver extremely high cluster densities.

paired-end sequencing: A process of sequencing from both ends of a DNA fragment in the same run and
aligning the forward and reverse reads asread pairs.

percent passing filtter (%PF): Percent passingfilter (%PF) is animportant sequencing QC metric that refers to
the number of clusters that have passed a filter and wil be retained for downstream analysis.

percent =Q30: Q30is a quality score in which one base callin 1000is predicted to be incorrect. Percent
>Q30referstothe percentage of bases that have a quality score of Q30 or above.

quality score (Q-score): A prediction of the probability of an error in base calling.

quantitative polymerase chain reaction (QPCR): An application that enables the measurement of nucleic acid
quantitiesin samples. The nucleic acid ofinterest isamplified with the polymerase enzyme. The level of the
amplified product accumulation during PCR cyclesis measured in realtime. These data are used toinfer
starting nucleic acid quantities.

read depth: See "sequencing coverage". Alternatively, in single-cell sequencing read depthis discussed not
inthe number of reads per base, but inthe number of reads per cell.

RNA Integrity Number (RIN): An algorithm that assigns integrity values to RNA measurements based on
electrophoretic RNA measurements and a combination of different features that contribute information about
RNA integrity to obtain a more universal measure.

RNA Quality Number (RQN): A proprietary algorithm developed by AATI for use with the Fragment Analyzer
for assessing quality of RNA samples, whichis equivalent to the RIN.

sequencing by synthesis (SBS): SBS technology uses four fluorescently labeled nucleotides to sequence the
tens of millions of clusters on the flow cell surface in parallel. During each sequencing cycle, a single labeled
dNTPisadded tothe nucleic acid chain. The nucleotide label serves as a “reversible terminator” for
polymerization: after dNTP incorporation, the fluorescent dye is identified through laser excitation and
imaging, then enzymatically cleaved to allow the next round ofincorporation. Base calls are made directly
from signalintensity measurements during each cycle.

sequencing coverage: The average number of sequenced bases that align to each base of the reference
DNA. Forexample, a whole genome sequenced at 30x coverage meansthat, on average, each base inthe
genome was sequenced 30times. Sequencing coverage can also be referred to as "read depth”.
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