DNase-Seq/DNasel-Seq

DNase-Seq/DNasel-Seq

DNase I footprinting was first published in 1978 and predates both Sanger sequencing and NGS. The first published use with NGS was published by Boyle et al. and later optimized for sequencing1. A high-sensitivity protocol is also available (scDNase-seq)2.

In this method, DNA-protein complexes are treated with DNase l, followed by DNA extraction and sequencing. Sequences bound by regulatory proteins are protected from DNase l digestion. Deep sequencing provides accurate representation of the location of regulatory proteins in the genome. In a variation on this approach, the DNA-protein complexes are stabilized by formaldehyde crosslinking before DNase I digestion. The crosslinking is reversed before DNA purification. In an alternative modification, called GeF-seq, both the crosslinking and the DNase I digestion are carried out in vivo, within permeabilized cells3.

Pros:
  • Can detect “open” chromatin4
  • No prior knowledge of the sequence or binding protein is required
  • Compared to formaldehyde-assisted isolation of regulatory elements and sequencing (FAIRE-seq), has greater sensitivity at promoters5
Cons:
  • DNase l is sequence-specific and hypersensitive sites might not account for the entire genome6
  • DNA loss through the multiple purification steps limits sensitivity7
  • Integration of DNase I with ChIP data is necessary to identify and differentiate similar protein-binding sites
  1. Chaitankar V., Karakulah G., Ratnapriya R., Giuste F. O., Brooks M. J., et al. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research. Prog Retin Eye Res. 2016;55:1-31
  2. Yan H., Tian S., Slager S. L., Sun Z. and Ordog T. Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies. Am J Epidemiol. 2016;183:96-109
  1. Qiu Z., Li R., Zhang S., et al. Identification of Regulatory DNA Elements Using Genome-wide Mapping of DNase I Hypersensitive Sites during Tomato Fruit Development. Mol Plant. 2016;9:1168-1182
  2. Frank C. L., Manandhar D., Gordan R. and Crawford G. E. HDAC inhibitors cause site-specific chromatin remodeling at PU.1-bound enhancers in K562 cells. Epigenetics Chromatin. 2016;9:15
  3. Lu F., Liu Y., Inoue A., Suzuki T., Zhao K., et al. Establishing Chromatin Regulatory Landscape during Mouse Preimplantation Development. Cell. 2016;165:1375-1388
  4. Badal S. S., Wang Y., Long J., et al. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nat Commun. 2016;7:12076
  5. Adar S., Hu J., Lieb J. D. and Sancar A. Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis. Proc Natl Acad Sci U S A. 2016;113:E2124-2133
  6. Bevington S. L., Cauchy P., Piper J., Bertrand E., Lalli N., et al. Inducible chromatin priming is associated with the establishment of immunological memory in T cells. EMBO J. 2016;35:515-535
  7. Browne J. A., Yang R., Eggener S. E., Leir S. H. and Harris A. HNF1 regulates critical processes in the human epididymis epithelium. Mol Cell Endocrinol. 2016;425:94-102
  8. Chaitankar V., Karakulah G., Ratnapriya R., Giuste F. O., Brooks M. J., et al. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research. Prog Retin Eye Res. 2016;55:1-31
  9. Corces M. R., Buenrostro J. D., Wu B., Greenside P. G., Chan S. M., et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 2016;48:1193-1203
  10. Georgakilas G., Vlachos I. S., Zagganas K., et al. DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators. Nucleic Acids Res. 2016;44:D190-195
  11. Lensing S. V., Marsico G., Hansel-Hertsch R., Lam E. Y., Tannahill D. and Balasubramanian S. DSBCapture: in situ capture and sequencing of DNA breaks. Nat Methods. 2016;13:855-857
  12. Metser G., Shin H. Y., Wang C., et al. An autoregulatory enhancer controls mammary-specific STAT5 functions. Nucleic Acids Res. 2016;44:1052-1063
  13. Schmidt S. F., Madsen J. G., Frafjord K. O., Poulsen L., Salo S., et al. Integrative Genomics Outlines a Biphasic Glucose Response and a ChREBP-RORgamma Axis Regulating Proliferation in beta Cells. Cell Rep. 2016;16:2359-2372
  14. Shin H. Y., Willi M., Yoo K. H., et al. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat Genet. 2016;48:904-911
  15. Thompson B., Varticovski L., Baek S. and Hager G. L. Genome-Wide Chromatin Landscape Transitions Identify Novel Pathways in Early Commitment to Osteoblast Differentiation. PLoS One. 2016;11:e0148619
  16. Yang R., Kerschner J. L., Gosalia N., et al. Differential contribution of cis-regulatory elements to higher order chromatin structure and expression of the CFTR locus. Nucleic Acids Res. 2016;44:3082-3094